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Abstract. The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is
developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments.
Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X
sounding rocket experiments and the HEROES balloon payload. Our current orbital pro-
gram is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART)
to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG).
A second component of our work is the development of fabrication techniques and optical
metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.
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1. Introduction

HEROES, for High Energy Replicated Optics
to Explore The Sun is a collaborative ef-
fort between MSFC & Goddard Space Flight
Center to modify an existing MSFC-developed
balloon-borne hard X—Raﬁ telescope (20-75
keV) to observe the Sun® HEROES is de-
signed to make both daytime solar and night-
time astrophysical observations within the
same balloon flight, and will continue to
demonstrate the quality of MSFC-developed
optics. HEROES utilizes 8 MSFC-fabricated
hard-x-ray mirror modules, with approxi-
mately 14 shells in each, and 8 supporting x-
ray detectors, gondola and astrophysical point-
ing system and is scheduled to fly in Fall 2013.
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FOXSI, for Focusing Optics X-ray Solar
Imager is a sounding-rocket-based payload led
by the University of California, Berkeley and
consisting of x-ray optics provided by MSFC
and focal plane detectors provided by Japan
(Krucker et al.l2011). The purpose of the pay-
load is to measure the weak coronal output
with good angular resolution (better than 10
arc seconds FWHM) and against bright foot-
prints. The imager utilizes 7 MSFC-fabricated
x-ray mirror modules. A FOXSI-1 configura-
tion, with 7 mirrors in each x-ray module flew
in November 2012. MSFC is now producing
3 additional shells per module to boost high-
energy response for the next flight, FOXSI-2,
scheduled for 2014.

Micro-X is a sounding rocket based pay-
load consisting of x-ray optics (provided by
MSFC) and a calorimeter detector led by
MIT (Figueroa-Feliciano et al|l2012). Micro-
X will fly in early 2015 and make high-
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spectral-resolution images of supernova rem-
nants Puppis A and Cas A. Fabrication of the
0.5-m-diameter Micro-X optics has just begun.

MSFC has designed and is fabricating
four Astronomical Roentgen Telescope (ART)
(Pavlinsky et al|[2012) x-ray optics mod-
ules under an International Reimbursable
Agreement between NASA and with Russian
Space Research Institute (IKI) for launch
on board the Russian-German Spectrum
Roentgen Gamma Mission (SRG) at the end of
2014. Each module has 28 nested shells giving
65 sq. cm on-axis effective area at 8 kev with
an angular resolution requirement of <60 arc-
seconds (Gubarev et al.|2012).

2. Technology development

A multi-beam long trace profiler (LTP) is
under development at NASA’s Marshall Space
Flight Center (Kilaru et al. 2011)) to increase
the efficiency of metrology of replicated X-
ray optics. A traditional LTP operates with
a single laser beam that scans along the test
surface to detect slope errors. While capa-
ble of exceptional surface slope accuracy, the
LTP single beam scanning has a slow measur-
ing speed and thus metrology efficiency can
be increased using multiple beams that can
scan a section of the test surface at a sin-
gle instance. The multi-beam long trace pro-
filer components have been fabricated, tested
individually and assembled into a breadboard
to demonstrate viability. The system resolution
due to the detector-lens pair is estimated to be
~0.23 microrad. This study forms the ground-
work for a future modular metrology approach
where-in an entire length of a test surface can
be measured in a single instance using mul-
tiple optical beams. Multiple frequencies can
also be measured simultaneously. A vacuum
coating technique,differential deposition, is
being investigated at MSFC to reduce X-ray
mirror figure errors, thereby improving their
achievable resolution (Kilaru et al.2010). The
technique has been successfully implemented
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on synchrotron optics for fine figure correc-
tion (Alcock & Cockerton!|2010). Simulations
at MSFC showed that the best strategy was
to correct the deviations in stages — begin-
ning with low-spatial frequency (large ampli-
tude) corrections using a wider slit, and then
addressing the higher-spatial frequencies with
progressively decreasing slit-sizes. The tech-
nique was demonstrated on medical-imaging
X-ray optics. Profile metrology data was used
to estimate the necessary correction and ma-
terial of varying thickness was deposited via
RF sputtering on the inside of the shell to re-
duce the figure deviations. Improvements in
the overall surface profiles were observed and
an RMS slope error improvement from 12 arc
secs to 7 arc secs was obtained. In these tests
our metrology capability limited the imple-
mentation of the technique to coarsest (5 mm
spatial extent) deviation corrections. Currently
development is focused on implementing the
technique on the X-ray shells being fabricated
for astronomical applications. The relatively
larger diameter of these shells enables the use
of non-contact interferometric profile measure-
ment techniques, making it possible to measure
and correct much finer (1 mm spatial extent)
features so much larger improvements in an-
gular resolution are expected.
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